8.1: Normal Random Variables (2025)

  1. Last updated
  2. Save as PDF
  • Page ID
    105845
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Section 1: Introduction

    Definition: Normal probability density curve

    A normal probability density curve with parameters \(\mu\)and \(\sigma\)is a bell-shaped curve that satisfies the following properties:

    1. Has the peak at \(\mu\)and symmetric about \(\mu\).
    2. Extends indefinitely in both directions, approaching but never touching the horizontal axis.
    3. The Empirical rule holds that is:
      1. ~68% of the area under the curve is between \(\mu-1\sigma\)and\(\mu+1\sigma\);
      2. ~95% of the area under the curve is between\(\mu-2\sigma\)and\(\mu+2\sigma\);
      3. ~99.7% of the area under the curve is between \(\mu-3\sigma\)and\(\mu+3\sigma\).

    The description of the curve should sound familiar as we have seen it before!

    8.1: Normal Random Variables (1)

    Definition: Normal random variable with parameters \(\mu\) and \(\sigma\)

    We define a normal random variable with parameters\(\mu\)and \(\sigma\) as a continuous random variable with a normal probability density curve with parameters \(\mu\)and \(\sigma\). We denote such a random variable in the following way:

    \(X \sim N(\mu, \sigma)\)

    Definition: Parameters of a normal distribution

    The values, \(\mu\) and \(\sigma\), are called the parameters of a normal distribution and each pair of such values determines a unique shape of the probability density curve.

    Example \(\PageIndex{1.1}\)

    For example, when\(\mu=50\) and \(\sigma=10\) we get the following curve:

    8.1: Normal Random Variables (2)

    Example \(\PageIndex{1.2}\)

    For example, when \(\mu=8\) and \(\sigma=2\)we get the following curve:

    8.1: Normal Random Variables (3)

    Let’s make sure we understand the properties of normal probability density curves and use the empirical rules to find some probabilities for any \(X \sim N(\mu, \sigma)\).

    • To find the probability that \(X\) is less than \(\mu\)we will look for the area under the curve to the left of \(\mu\). This region’s area can be found by adding the areas of included regions together to get \(P(X<\mu)=0.50\)or \(50\%\).
    • To find the probability that \(X\)is between \(\mu-\sigma\)and \(\mu+\sigma\)we will look for the area under the curve between \(\mu-\sigma\)and \(\mu+\sigma\). This region’s area can be found by adding the areas of included regions together to get \(P(\mu-\sigma<X<\mu+\sigma)=0.68\)or \(68\%\).
    • To find the probability that \(X\)is between \(\mu\)and \(\mu+2\sigma\)we will look for the area under the curve between \(\mu\)and \(\mu+2\sigma\). This region’s area can be found by adding the areas of included regions together to get \(P(\mu<X<\mu+2\sigma)=0.475\)or \(47.5\%\).
    • To find the probability that \(X\)is between \(\mu-\sigma\)and \(\mu+2\sigma\)we will look for the area under the curve between \(\mu-\sigma\)and \(\mu+2\sigma\). This region’s area can be found by adding the areas of included regions together to get \(P(\mu-\sigma<X<\mu+2\sigma)=0.815\)or \(81.5\%\).
    • To find the probability that \(X\)is greater than \(\mu+\sigma\)we will look for the area under the curve to the right of 8.1: Normal Random Variables (4). This region’s area can be found by adding the areas of included regions together to get \(P(X>\mu+\sigma)=0.16\)or \(16\%\).
    • To find the probability that \(X\)is less than \(\mu-2\sigma\)we will look for the area under the curve to the left of \(\mu-2\sigma\). This region’s area can be found by adding the areas of included regions together to get \(P(X<\mu-2\sigma)=0.025\)or \(2.5\%\).
    • To find the probability that \(X\)is greater than \(\mu+4\sigma\)we will look for the area under the curve to the right of \(\mu+4\sigma\). This region’s area is essentially equal to \(0\) so the probability is nearly \(0\%\), that is \(P(X>\mu+4\sigma)=0\).
    Example \(\PageIndex{1.3}\)

    Example: For \(X \sim N(\mu=50, \sigma=10)\), let’s find the following probabilities:

    • To find the probability that \(X\)is less than \(50\)we will look for the area under the curve to the left of \(50\). This region’s area can be found by adding the areas of included regions together to get \(P(X<50)=0.50\)or \(50\%\).
    • To find the probability that \(X\)is between \(40\)and \(70\)we will look for the area under the curve between \(40\)and \(70\). This region’s area can be found by adding the areas of included regions together to get \(P(40<X<70)=0.815\)or \(81.5\%\).
    Example \(\PageIndex{1.4}\)

    Example: For \(X \sim N(\mu=8, \sigma=2)\), let’s find the following probabilities:

    • To find the probability that \(X\)is between \(8\)and \(12\)we will look for the area under the curve between \(8\)and \(12\). This region’s area can be found by adding the areas of included regions together to get \(P(8<X<12)=0.475\)or \(47.5\%\).
    • To find the probability that \(X\)is between \(6\)and \(12\)we will look for the area under the curve between \(6\)and \(12\). This region’s area can be found by adding the areas of included regions together to get \(P(6<X<12)=0.815\)or \(81.5\%\).

      Section 2: Working with Normal Random Variables

      For a normal random variable with parameters \(\mu\)and \(\sigma\), we want to be able to find the probabilities that involve the values \(a\), \(b\), and \(c\) that are not covered by the Empirical rule:

      • \(P(X<c)\)
      • \(P(X>c)\)
      • \(P(a<X<b)\)

      But first let’s make sure we understand the questions!

      • To find the probability that \(X\) is less than \(c\), we will look for the area under the curve to the left of \(c\).
      • To find the probability that \(X\) is greater than \(c\), we will look for the area under the curve to the right of \(c\).
      • To find the probability that \(X\) is between \(a\) and \(b\), we will look for the area under the curve to the right of \(a\) and to the left of \(b\).

      While it is clear what the regions’ areas look like they cannot be found by using the empirical rule. So how do we find the probabilities that involve values that are not covered by the Empirical rule such as \(P(X<c)\), \(P(X>c)\), \(P(a<X<b)\).

      For \(X \sim N(\mu=8,\sigma=2)\), let's find the following probabilities:

      • \(P(X<10.5)\)
      • \(P(X>9.3)\)
      • \(P(7.1<X<8.7)\)

      Luckily, there are ways to use technology to answer these questions:

      8.1: Normal Random Variables (5)

      8.1: Normal Random Variables (6)

      8.1: Normal Random Variables (7)

      However, it is worth learning how to perform this task by hand. To be able to answer the same questions manually we have to review the concept of a z-score.

      Definition: \(z\)-score

      The \(z\)-score of an observation \(x_i\) is computed by using the formula:

      \(z_{\text{score}}=\frac{x_i-\mu}{\sigma}\)

      Example \(\PageIndex{2.1}\)

      Let’s find some \(z\)-scores for a normal random variable \(X\) with \(\mu=8\) and \(\sigma=2\):

      • the z-score of \(x_1=7.1\) is \(\frac{7.1-8}{2}=-0.45\)
      • the z-score of \(x_2=8.7\) is \({8.7-8}{2}=0.35\)
      • the z-score of \(x_3=9.3\) is \(\frac{9.3-8}{2}=0.65\)
      • the z-score of \(x_4=10.5\) is \(\frac{10.5-8}{2}=1.25\)

        If instead of observing a normal variable with parameters \(\mu\) and \(\sigma\) we consider the \(z\)-scores of the observed values. Then it is not too hard to observe that the \(z\)-scores also have a normal distribution with parameters \(0\) and \(1\) which we call the standard normal distribution. In other words, the new random variable \(\frac{X-\mu}{\sigma}\)has the standard normal distribution, therefore:

        \(\frac{X-\mu}{\sigma}=Z \sim N(0,1)\)

        By the way, the fact that the standard normal distribution is called \(Z\)-distribution explains the origin of the name for a term “a \(z\)-score”.

        Definition: Standardizing arandom variable

        The process of converting the original normal random variable to \(Z\) is called standardizing the random variable.
        Most importantly, the area between any two values \(a\) and \(b\) under the normal curve is the same as the area between the \(z\)-scores of the \(a\) and \(b\) under the \(z\)-curve:

        \(P(a<X<b)=P(z_a<Z<z_b )\)

        Example \(\PageIndex{2.2}\)

        For \(X \sim N(\nu=8,\sigma=2)\), find the following probabilities:

        • \(P(X<10.5)=P(Z<\frac{10.5-8}{2})=P(Z<1.25)=0.8944\)
        • \(P(X>9.3)=P(Z>\frac{9.3-8}{2})=P(Z>0.65)=0.2578\)
        • \(P(7.1<X<8.7)=P(\frac{7.1-8}{2}<Z<\frac{8.7-8}{2})=P(-0.45<Z<0.35)=P(Z<0.35)-P(Z<-0.45)=0.6368-0.3264=0.3104\)

        Similarly, we can use the standardization process for any other normal random variable.

        Example \(\PageIndex{2.3}\)

        For \(X\ \sim N(\mu=50, \sigma=10)\), find the following probabilities:

        • \(P(X<58)=P(Z<\frac{58-50}{10})=P(Z<0.8)=0.7881\)
        • \(P(X>32)=P(Z>\frac{32-50}{10})=P(Z>-1.8)=0.9641\)
        • \(P(47<X<69)=P(\frac{47-50}{10}<Z<\frac{69-50}{10})=P(-0.3<Z<1.9)=0.589\)

        Of course, every result obtained manually can be confirmed using technology:

        8.1: Normal Random Variables (8)

        8.1: Normal Random Variables (9)

        8.1: Normal Random Variables (10)

        Next, we will discuss how to find \(x_\alpha\). To find \(x_\alpha\)means to find the value the area to the right of which is equal to \(\alpha\). In other words, we are looking for \(x_\alpha\)such that

        \(P(X>x_\alpha)=\alpha\)

        Standardizing the left-hand side of the equation gives us

        \(P(X>x_\alpha)=P(Z>\frac{x_\alpha-\mu}{\sigma})=\alpha\)

        which implies that

        \(\frac{x_\alpha-\mu}{\sigma}=z_\alpha\)

        therefore

        \(x_\alpha=\mu+z_\alpha\cdot\sigma

        Example \(\PageIndex{2.4}\)

        For a normal random variable with parameters \(\mu=8\) and \(\sigma=2\), let’s find \(x_0.38\) by using the above formula.

        \(x_{0.38}=\mu+z_{0.38}\cdot\sigma\)

        Now that we related x_{0.38} to z_{0.38} we use the \(z\)-table as we have done it before to identify \(\alpha=0.38\) and \(1-\alpha=0.62\) to obtain the \(z_{0.38}=0.31\). Now we can compute the desired \(x_{0.38}\) by finishing the calculations:

        \(x_{0.38}=\mu+z_{0.38}\cdot\sigma=8+0.31⋅2=8.62\)

        Note that the following two statements are true by the definition of the alpha notation:

        \(P(X<8.62)=0.62\) and \(P(X>8.62)=0.38\)

        Example \(\PageIndex{2.5}\)

        For a normal random variable with parameters \(\mu=50\) and \(\sigma=10\), let’s find \(x_{0.10}\)by using the above formula.

        \(x_{0.10}=\mu+z_{0.10}\cdot\sigma\)

        Now that we related \(x_{0.10}\)to \(z_{0.10}\)we use the \(z\)-table as we have done it before to identify \(\alpha=0.10\) and \(1-\alpha=0.90\) to obtain the \(z_{0.10}=1.28\). Now we can compute the desired \(x_{0.10}\) by finishing the calculations:

        \(x_{0.10}=\mu+z_{0.10}\cdot\sigma=50+1.28⋅10=62.8\)

        Now that we know how to find the probabilities and \(x_\alpha\)s let’s discuss the parameters of a normal distribution.It is not a coincidence that the two parameters, \(\mu\)and \(\sigma\), for a normal random variable are labeled similar to the mean and the standard deviation of the data set. The meaning and the interpretation of the mean and standard deviation for a continuous random variable is the same as for discrete random variables. That is, the expectation (or the mean) of a random variable is a measure of the center of the distribution and the variance (and standard deviation) is a measure of the spread of the random variable.

        For \(X \sim N(\mu, \sigma)\):

        \(E[N(\mu,\sigma)]=\mu\)

        \(VAR[N(\mu,\sigma)]=\sigma^2\)

        \(SD[N(\mu,\sigma)]=\sigma\)

        Example \(\PageIndex{2.6}\)

        For example, for \(X \sim N(10,2)\) by the three standard deviations rule, we may conclude that:

        Range

        Numerical Range

        Interpretation

        within \(2\sigma_X\)from \(\mu_X\)

        between 6 and 14

        “expected”

        more than\(2\sigma_X\)from \(\mu_X\)

        less than 6 or more than 14

        “unusual”

        more than\(3\sigma_X\)from \(\mu_X\)

        less than 4 or more than 16

        “abnormal”

        8.1: Normal Random Variables (2025)
        Top Articles
        Latest Posts
        Recommended Articles
        Article information

        Author: Kimberely Baumbach CPA

        Last Updated:

        Views: 5612

        Rating: 4 / 5 (41 voted)

        Reviews: 88% of readers found this page helpful

        Author information

        Name: Kimberely Baumbach CPA

        Birthday: 1996-01-14

        Address: 8381 Boyce Course, Imeldachester, ND 74681

        Phone: +3571286597580

        Job: Product Banking Analyst

        Hobby: Cosplaying, Inline skating, Amateur radio, Baton twirling, Mountaineering, Flying, Archery

        Introduction: My name is Kimberely Baumbach CPA, I am a gorgeous, bright, charming, encouraging, zealous, lively, good person who loves writing and wants to share my knowledge and understanding with you.